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Plasma properties: Debye shielding

1 debye shielding

We now consider a negative test charge Q immersed in a homogeneous plasma. Q
will attract ions but repellants electrons. The displacement of electrons produces a
polarization charge, which shields the plasma from the test charge. The theory of
shielding has been developed first in 1923 by Peter Debye and Erich Hückel for
dielectric fluids.

To derive the shielding potential φ for the charge Q we assume a homogeneous
plasma with electrons of temperature Te and density ne and a fixed background of ions
of density n0. After the test charge has established equilibrium with the plasma its
potential is given by the Poisson equation

electrons: q =−e

∇
2φ(r) =− ρ

ε0
=− e

ε0
(n0−ne(r)) with φ(∞) = 0. (1)

In an electrostatic field the velocity distribution of the electrons is

fe(v) = n0

{
m

2πkBT

}3/2

exp

{
−

1
2 mv2 +qφ(r)

kBT

}
.

The knowledge of fe(v) allows us to find the local electron number density ne(r)

ne(r) =
∫
R

fe(v)dv = n0 exp
{

eφ(r)
kBT

}
,
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which we substitute into Eq. (1)

∇
2φ=− e

ε0
n0

(
1− exp

{
eφ
kBT

})
.

We expand the exponential term into a Taylor series to linearize the quation for φ

exp
{

eφ
kBT

}
= 1+

eφ
kBT

+
1
2

(
eφ
kBT

)2

+
1
3!

(
eφ
kBT

)3

+ · · ·

and keep only the first two terms

∇
2φ ≈ n0

ε0

e2φ

kBT
.

Because the plasma is isotropic we now want to make use of the spherical symmetry
of the problem. To this aim we express the Laplace operator in spherical coordinates

∇
2φ=

1
r2 ∂r

(
r2

∂rφ
)
+

1
r2 sinθ

∂θ (sinθ∂θφ)+
1

r2 sin2 θ
∂

2
φφ

and drop the symmetric angular terms

∇
2φ=

1
r2 ∂r

(
r2

∂rφ
)
=

n0

ε0

e2φ

kBT
.

This leads to an ordinary second order linear differential equation

1
r2 ∂r

(
r2

∂rφ
)
− n0

ε0

e2φ

kBT
= 0

1
r

∂
2
r (rφ)−

n0

ε0

e2φ

kBT
= 0

∂
2
r (rφ)−

n0

ε0

e2φ

kBT
(rφ) = y′′− n0

ε0

e2φ

kBT
y = 0 with y = (rφ) .

The solutions of y′′+a2y = 0 have the general form

y(x) =
c
x

exp(±ax) ,

from which follows that

φ(r) =
A
r

exp
(
− r
λD

)
with

λ2
D =

ε0kBTe

n0e2 (2)

being the Debye length. The value for the constant A can be found by using the fact
that at large distances φ(r) must asymptotically approach Coulomb’s law and we yield
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Figure 1: Comparison between the Debye-Hückel potential (orange) of a charge
immersed in a plasma and the Coulomb potential (blue) of a free charge.

the so-called Debye-Hückel potential

φ(r) =
Q

4πε0

1
r

exp
(
− r
λD

)
(3)

(Fig. 1). A useful relation for the Debye length is

λD = 7430m

√
T
eV

m−3

n
. (4)

2 energy

Let us return to the Debye-Hückel potential

φ(r) =
Q

4πε0

e−r/λD

r
, (5)

which we have discussed in the last lecture. φ(r) describes the effective potential
of an electron in a plasma, which is not any longer just ∼ r−1. This results from the
necessity for a plasma to maintain charge neutrality by arranging the electrons in
a shielding configuration. This means nothing else that the motion of particles in a
plasma is not as random as in a neutral gas and that the energy of a plasma is not
just the interior energy of a neutral gas. Following Debye and Hückel we will now
determine the contribution of the correlated plasma particle motion to the energy.

The energy of a system of N electrostatically interacting charged particles is

Ee =
N
2

eφa,

3



L E C T U R E 3 PHYS5110

where φa is the potential of the field resulting by the other charged particles acting on
the ath particle. We can find φa by expanding Eq. 5 into a Taylor series and dropping
the non-linear terms

φ(r)≈ e
4πε0

1
r
− e

4πε0

1
λD

.

The first term is the Coulomb field of the particle itself, while the second term is the
field resulting from the other particles, i.e. φa, and thus

Ee =−
N
8

e2

πε0

1
λD

=−N
8

e2

πε0

(
n0e2

ε0kBTe

)1/2

,

=−N
e3

8πε3/2
0

n1/2
0

(
1

kBTe

)1/2

=−N3/2 e3

8πε3/2
0

(
1

VkBTe

)1/2

,

where V is the volume. This allows us now to compute the free energy F of the plasma
by using

Free energy F(T,V,N) =
U−T S

E
T 2 =− ∂

∂T
F
T
,

and

Fplasma = Fideal−T
∫ Ee

T 2 dT = Fideal−
2
3

Ee.

From this follows that the pressure is

p(T,V,N) =−∂F
∂V
|T,N =

NkBT
V
− Ee

3V
.
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